Al) At24 281 GPRINT A LISP PRETTY PRINTER PROVIOING EATENSIVE USER
FORMAT-CONTROL MEC..(U) MASSACHUSETTS INST OF TECH
CAMBRIDGE ARVIFICIAL INTELLIGENCE L.. R C WATERS

UNCLASSIFIED SEP 82 AL-M-611A NOOO14-80-C-0808 /G 14/8

- e—— e

e e t—— e - e

L j28 W25
o fl i
§ b mz.o

|||||';2Eé i l

o

I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS —1963 - A

T R o A

~\‘l} 'T. I S

ONC FuE COPY

83 02 9¢s

C27

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEF e T e FORM
. REPORT NUMBER 2. GOVTY ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER
AR 611A
@ AD - RIRAY 26/
4. TITLE (and Subtitle) N~ S. TYPE OF REPORT & PERIOD COVERED
GPRINT A Li sp Pretty Printer Providing - Memorandum

Extensive User Format-Control Mechanism .

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACY OR GRANT NUMBER(s)

Richard C. Waters N00014-80-C-0505

9. PERFORMING ORGANIZATION NAME ANDO ADORESS
Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Massachusetts 02139

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanced Research Projects Agency Revised Sept. 1982
1400 Wilson Blvd 13. NUMBER OF PAGES
Arlington, Virginia 22209 27 pages

14. MONITORING AGENCY NAME & ADDRESS(if differant from Controlling Olfice) 15. SECURITY CL ASS. (of this report)
Office of Naval Research UNCLASSIFIED
Information Systems
Arlington, Virginia 22217 782 DECL ASSIFICATION, DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited. ‘ \c

1

17. DISTRIBUTION STATEMENT (of the sbetract entered in Block 30, 1t diiferent from Report) .

Distribution is Unlimted

8. SUPPLEMENTARY NOTES s . ,iﬂ) —ﬁ/dg3/

None

! T e e men

L T Y, g8 Ga
19. KEY WORDS (Continue on reverse eide i necessary and identily by block nugnbder) .- .o W AN
» T 7 T . .
Pretty Printing N - @) SeM b
Formatting - RIS SIEN RIS
Programming environments o e R !

LISP .

\Onlpete e te)
A Lisp pretty printer is presented which makes it e sy, for a user to cbntrol thx
r

format of the output produced. The printer can ;be used as ge'xfe't‘ﬁ‘methanism f

20. ABSTRACT (Continue on reverss eide If necessary and identify by block nupber)

printing data structures as well ax programs. It is"8}vifed’'3hto two parts:
a set of formatted by creating a formatting function fof®tRABVE¥ype.?"™WRén passed
an object of that type, the formatting function icreates a'sequence of firection
which specify how the object should be printed if it can fit on one lihe and ho
it should be printed if it must be broken up across multiple lines. }:on't

o e st nme e - r——

DD ,on" 1473 eoimion oF 1 nov 6313 ORsoLETE UNCLASS IFIED

$/N 0:02-014-6601)

SECURITY CLASSIFICATION OF THIS PAGE (When Dare Tntored)

L L ek

T o ——

=TT

I

A simple template language makes it easy to specify these directions. Based on the
line length available, the output routine decides what structures have to be
broken up across multiple lines and produces the actual output following the
directions created by the formatting functions. ' The paper concludes with

a discussion of how the pretty printing method presented could be applied to
languages other than lisp.

Aocooc!aa_rot
"NTIS GRAML
pTIC 138 (W]

Ur.anmeusced 0
Justificetson .

by .
| Distridvution/ =
Svailadility Codoa____;

‘l"—"’g’m}au and/ef
Diet | Special

| :
Al

T———

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

Ty

ey T

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.l Mcmo No. 611a Revised - September 1982

GPRINT

A LISP Pretty Printer Providing
Extensive User Format-Control Mechanisms

by

Richard C. Waters

ABSTRACT

) A Lisp pretty printer is presented which makes it casy for a user to control the format of the
output produccd. ‘The printer can be used as a general mechanism for printing data structures
as well as programs. It is divided into two parts: a set of formatting fimctions. and an output
routine. ‘The user specifies how a particular type of object should be formatted by creating a
formatting function for the type. When passed an object of that tvpe, the tormatting function
creates a sequence of directions which specify how the object should be printed if it can fit on
onc line and how it should be printed if it must be broken up across multiple lines.: A simple
template language makes it casy to specify these directions. Based on the line length available,
the output routine decides what structures have to be broken up across multipie lines and
produces the actual output following the dircctions created by the formatting functions. ‘The
paper concludes with a discussion of how the pretty printing method presented could be
applicd to languages other than Lisp.
' I

‘This report describes rescarch done at the Artificial Intelligence Laboratory of the Massachusetts Institute of
Technology. Support for the laboratory's artificial intelligence rescarch has been provided in part by the
Advanced Research Projects Agency of the Departmient of Defense under Office of Naval Research contracts
NOD014-75-C-0643 and NO0014-80-C-0505,

‘The views and conclusions contained in this paper are those of the author, and should not be interpreted as
nceessieily representing the ofticial policies, cither expicssed or implied, of the Departmient of Defense, or the
Uniied Staes Governiment,

e’

Wi oo

-

Waters -1- GPRINT

Introduction

Most pretty printers are used solcly for formatting program text. hey typically operate by reading in a
file of program text and producing a formatted text file as output, In generad, they have built-in knowledge
specilying how cach syntactic structure in the programming language should be formatted and do not give the
user any significant control over the format of the output produced {1, 2, 4-9]. With such a preity printer, the
lack of user format control mechanisms is tolerable because in most cases the user cannot define any new
language constructs and therefore the implementors of the printers can predict in advance all of the structures
which the printer can encounter (and though there is no finn consensus on how these structures should be
formatted it is possible to select reasonably acceptable formats).

Some pretty printers (such as the Lisp printer presented here) are used as part of the programming
cnvironment to display information to the user rather than as text file processors. (Note that an inherent
limitation of such printers is (hat they cannot operate on parts of a program (such as commenis) which appear
only in text files.) These pretty printers do not have to be refegated solely to printing programs. I'hey can be
just as useful for printing dma structures. If a pretty printer’s use is extended to user defined dati structures,
user format control mechanisms become essential becausce it is no longer possible to predict what structures
will be encountered.

Extending pretty printers to deal with data is important because user defined data structures arc central to
almost any program. When debugging a program, a programuner needs 1o be able to look at various data
items. Every interactive programming environment supports the display of the simple atomic data valucs
supported by the language (such as numbers and strings). However, most environments are not prepared to
print out the contents of complex user data structures in any uscful way.

User defined data abstractions are typically implemented by combining together primitive data structures

‘(c.g. vectors, record structures, and pointers). A pretty printer can be extended to deal with arbitrary user

data abstractions by adding print formats for cach basic data structure. <or example, record structures might
be printed as <ficld! field2 . . .> with cuch field printed on a separate tine if the structure cannot be printed on
a single line. Vectors could be printed dnatogously as [iteml item2 .. .]. Pointers could be printed as ‘@'
followed by what they point to. Suppose that a user has defined a data abstraction which is implemented as a
record structure with several ficlds, one of which is a vector of pointers to records. Using the above default
formats. an instance of this abstraction would be printed as follows (assuming that several lines had to be used
(o print it),

<field

Jield

[e<field ...>
ofield . ..>»

0]
-4

Unfortunately, this simple approach is not very satisfactory, The direct display of the underlying data
structure which implements a data abstraction is not liable to capture the user's idea of what the data
abstraction mcans. |-or cxample, some components of the data structure may not be very important and
should nat be displayed at all. Other kinds of data structure components (for example, circular pointers)
cannot be displayed literally and must be abbreviated in some way. Alicrately, it may be usctul to print out
some additional quantities which, though not actually in the structure, are useful for understanding the

structure (for example, the namies of the fields or derived values computed from the ficld valucs).
A collueral advantage of the rigid output format initially proposed is that it can be built into the reader as
well as the printer so that it is possible to recreate a data structure by reading in its printed representation. In

GPRINT -2- Watcrs

order to maintain this rcadability property when fickds are being omitted, abbreviated, and/or added in the
printed representations for data structures, the user must be careful to insure that no information is actually
being lost. and the reader must be modified o take these special printed representations into account. In Lisp
progrmmming environments (for example [10]), this kind of reader modilication is usuatly possible though not
necessarily casy. 1t should be noted that in general it is much more important to print out a data structure in a
form which can be casily read and understood by the user than to print it out in a form which can be rcad by
the reader.

Another serious problem with the simple output scheme proposed above is that the kind of default
formatting rules proposed almost never lead to output which is aesthetic. The visual appearance of a data
structure has a very important effect on its understandability. Perhaps different delimiters or indentation
would tnake the data structure more readable. Perhaps the first two fickds are closely related and should
always be printed on the same linc. Perhaps the structure as i whole has two quite scparate logical pasts
which should always be printed on two lings.

In order to deal with these problems, it is essential that the user be able to control how individual data
abstractions arc to be printed. ‘The pretty printer for Lisp presented in this paper allows the user o specify for
cach type of data structure both what components to print, and how these components should be formatted.
It the printer is used as the standard printer, then the user will be able to inspeet his data structures and sce
them printed out acsthetically at all times,

Pretty printers are typically conceived of as system utilities for displaying information to the user.
However, a pretty printer can be much more uselul if it can also be used as an output Fcility which is called
direetly fromy user programs, The advantage of this is that it makes available a new paradigm for specifying
output format.

Moat high tovel tanguages have fucilities for specifying how output is to be formatied on the page (e.g. the
Fortin FORMAT statement). In general, these Gcilitics are oriented toward printing data structures whose
shape is known in advance on a page whose width is known in advance. There are usually no facilitics which
dead with variability in cither the shape of the data or the width of the page. 1If cither of these has o be
parameterized, then the programmer has to write code which computes how cach particular data structure
should be formatted.

Pretty printers are specifically designed to deal with variability in the data and in the space available.
When using a pretty printer, instead of specifying a format for the output as a whole, the prograsnmer
specifies individual formats for cach of the intermediate structures which can occur in the object to be
printed. ‘These formats do not have 1o be particularly concerned with either the line width or how the
intermediate structures will be combined together. When printing a structure, the pretty printer
atomatically combines the individual formats and decides where o insert line breaks and blank space in
order w make its output fit reaclably in the space available.

‘I'he sections below describe how a particular Lisp pretty printer (GPRINT) provides for user format control
and discuss some of the general issucs involved. GPRINT was originally implemented in 1975 as an attempt t
improve on an carlier pretty printer implemented by Goldstein [3). Goldstein's pretty printer is one of the
few pretty printers which docs include mechanisms providing significant user contral over the format
produced. Unfuawunately, the mechanisms he provides are at the same time complex to use and not very
powceiful. GPRINT has been rewritten four times most recently in 1981 in a continuing altempt to create a uscr
controllable pretty printer with very good hunan engincering,

GPRINT is wiitten in Lisp, and was developed in the context of a Lisp programming environment. ‘The
Lisp language is used in this paper to display partts of the pretty printing alponithie and Lisp lists are used in
examples of how ohjects are printed. ‘This is done because Lisp has several features which make the

e e A — s s e e < ———— i s et

Waters -3 GPRINY

implementation and explication of a pretty printer particularly casy. However, it should be noted (hat the
idcas cmbudicd in GPRINT are not limited to the Lisp domain. In particular, these ideas grow principally out
of the requirements for a highly interactive programming environment, cather than out of the Lisp language.
The last section of this paper discusses what would be required in order to implement a similac pretty printer
for a programming environment other than Lisp.

An Example

Before looking at GPRINT in detail, consider the following cxample. Suppose a uscr has defined a data
abstraction called NAMED-FORM with four parts: a FORM, which is some arbitrary l.isp cxpression; a ROOT,
which is an identificr associated with the FORM; a SUFFIX, which is used to disambiguate forms which have
the same ROOT: and a PARENT, which is a circular pointer pointing up to the NAMED~ FORM data structure which
contains this one. ‘Together the ROOT and the SUFFIX arc a unique name for the FORM. ‘The PARENT links
make it possible to go backwards from a NAMED-FORM Lo (he NAMED - FORMs containing it.

The function definitions below implement access functions and a constructor function for this data
abstraction implemented as a list. Following common Lisp programming practice, the symbol NAMED - ORM is
put in the CAR of this ist so that instances of the data ty pe can be recognized at run time.

(defun form (x) (cadr x))
(defun root (x) (caddr x))

(defun suffix (x) (cadddr x))
(defun parent (x) (car (cddddr x)))

(defun create-named-form (form root suffix parent)
(list 'named-form form root suffix parent))
If nothing more is said, then NAMED-FORMs will be printed out in the default format for lists as follows:
(NAMED-FORM (+ A B) ARG 1 ...)

‘There are scveral probleins with this. First, there is no good way to print the circular parent pointer (it is
clided as ™. .." above). Even if some mechanism is used to keep the print form finite, it will probably be too
large 1o be readable. Sccond, the CAR of the list is important for computational reasons but it is not a logical
part of the structure. One might well consider that seeing it printed out is a distraction. Third, the way the
remaining three parts of the structure are printed out does nothing to indicate their logical roles in the
structure. As a result, it is hard to sec what is what,

GPRINT -4 Waters

‘The following example shows one way in which NAMED-FORMs could be more acsthictically displayed.
ARG1: (+ A B)

‘e FORM is printed out preceded by a tag formed by printing the ROOT and SUFFIX as a single unit
followed by acolon. Note that you would not want to store the ROOT and the SUFFIX as a single tnit because
it is computationally cxpensive to break them apart. However this is casy for your cye to do. ‘T'hc PARENT
pointer is not printed at all.

The following format definition could be used to specify to GPRINT that NAMED-FORMs should be printed
out in the above way. 'The cxpression (DEFUN (symbol :GFORMAT) (arg) body) defines the body as a
formatting function which will be used to format lists with the indicated symbol as their CAR. When passed
such a list, the function creates a sequence of formatting instructions specifying what should be printed
corresponding to the list. Formatting functions can be quite complex. However, in this example, the
formatting function simply sclects three of the components of the data structure and calls the tunction GF
(short for GPRINT-FORMAT) in order to create the formaiting instiuctions.

(defun (named-form :Gformat) (x)
(GF {2 o » ':' - #}" (root x) (suffix x) (form x)))

‘The function (GF template argl arg2 . . .) creates a sequence of formatting instructions for its arguments
based on dircctions specified by the remplate. (Templates are discussed in detail below.) The template in this
example can be understood as follows: The { and } specify (hat the components between them should be
treated as a single logical unit when they are printed out. ‘The 2 alter the { specifics that an indentation of 2
should be used inside this structure i it has to be broken up across multiple lines. ‘The three s show where
the three components of the data structure should be printed. The '@ ' specifies that a colen should be
printed after the SUFFIX. Finally, the - specifies a conditionat line break. If the whole structure will not fit
on one line, then o line break will be inserted at that point. Otherwise a space will be printed.

ttis important to realize that the format does not just specily how an individual NAMED-FORM should be
printed in isolation. 1t is used as part of the specification of how complex data structures containing
NAMED -1 ORMs should be printed. For example, a list of (wo NAMED-FORMs would be printed as follows:

(ARG1: (+ A B)
CALLER3: (~ (+ A B) C))

‘The example assumes that in order to fit the structure into the space available for printing. it had to be
proken up acress two lines. The outermost set of parentheses and the fact that the two NAMED-FORMs arc lined

up vertically is controlied by the standard format for lists of data. The individual NAMED-FORMs arc formatted
as specitied above, '

e gt = et o

s it o o

Waters -5- GPRINT

The Basic Algorithm

‘The central feature of the algorithm used by GPRINT is that the pretty printing process is divided into two
parts as shown in Figure 1. ‘The formatting routine takes in an object and creates a sequence of formatting
instructions specifying what w print. ‘These instructions specify how cach part of the ohject is to be printed if
it will fit on one linc, and how it should be printed if it must be broken up across multiple lines. 'This
information is passed to the eutput routine as a sequence of entrics in a queuc. The output routine operates

as a coroutine processing the gueuce entries as they are created. It decides how to fit things into the actual
space available and then prints them.

FORMATTING ouTPUT
0BJECT ---~> -=-> QUEUE ~--> -==> TEXT
ROUTINE . - ROUTINE

Figure 1: Architecture of the basic pretty printing algorithm,

‘Ihe importance of dividing the algorithm into two parts comes from the fact that it allows a complete
separation between format specification and the output computation. The output routine is complex and
computation intensive. Taken separately, it can be designed to be efficient without compromising the need
for the formatting process to be as clear and simple as possible, Similarly, when designing the fornatting
routine and the user format control mechanisms it is possible to concentrate on providing a powerful and
convenient interface to the user.

‘The basic algorithm described above has been independently developed by several people [4, 7) in
addition w the author. However, the formatting routines in these other pretty printers are very primitive,
They include only a small st of canned formats and do notallow for user format control, In[7), Oppen gives
a tucid deseription of the way the output routine operates. His discussion centers on the fact that if the
lookahead used by the output routine when processing queue entrics is appropriately limited, then the
computation time required by the output rowtine is lincar in the number of queuce entrics created by the
formatting routine. ‘The only difference between his output routine and GPRINT'S output routine is that

GPRINT's queuc cntrics are more general. ‘11 paper fucuses on the unique aspect of GPRINT -- the way the
formatting process allows for aser format control.

v———

GPRINT -6- Waters

The Structure of the Formatting Routine

‘The structure of the formatting routing is based on the idea that any object to be printed by GPRINT can be
viewed as a directed graph where cach terminal node is a primitive data object (such as a number or a symbol)
and cach non-terminal node is a composite dita structure (such as a list or array). The formatting routine is
organiz¢d around a central dispatching function (GDISPATCH). At cach nixde, GDISPATCH sclects and calls an
appropriate formatting function bascd on various features of the node (such as its data type). ‘The formatting
function takes the node as its argument and pushes cntrics onto the queue which specify what to print and
how it should be formatted. Typically, formatting functions call the dispatching function recursively in order
to format the composite components of the node.

Consider the tollowing simplified version of GDISPATCH. ‘This version of GDISPATCH assumes that the
item to be formatted must be cither a number, a symbol, a string or a list. 1t first tests the data type of the
item. If it is not a fist then ATOM-FORMAT enters it directly into the queue as something to be printed out. If
the item s a list then GDISPATCH Tooks at the CAR of the list in order to pick a specific formatting function to
call. ‘e association between list CARs and formatting functions is recorded by storing (he function as the
:GFORMAT property of the CAR.

(defun Gdispatch (x)
(cond ({not (1istp x)) (atom-format x))
({not (symbolp (car x))) (funcall Gnon-symbol-car-format x))
((get (car x) ':Gformat)) (fumcall (get (car x) ':Gformat) x))
((fboundp (car x)) (funcall Gfn-format x))
(T (funcall Gsymbol-car-format x))))

If there is no special formatting function for a list then GDISPATCH uses cither a default format for
function applications or it formatter for data lists (these formatters are discussed further below). These deGawlt
fornmaters are stored i special variables so that they can be casily modified by the user. In a Lisp sysiem
there is no definitive way to distinguish the representation of a function call from other kinds of list dita. Asa
heuristic, GDISPATCH looks to sec whether the CAR of the list is the name of a currently delined function.

‘The actual version of GDISPATCH used by GPRINT is much more general than the one presented here,
First. it can dispatch on additional features of a list other than its CAR. Sccond. you can specify a specific
format to use when calling GPRINT which will override any dispatching. “hird. GDISPATCH dispatches on
many other data types as well as lists (for example, arrays). The user format control mechanisims described
here arc extended so that they are applicable to these other data types. This is discussed in more detail below.,

An important thing to keep in mind about formatting functions is that they do not print anything -- rather

- they specity a set of directions to be followed when GPRINT prints an object of the associated type. 1n order to
print something you call the function GPRINT. It calls GDISPATCH which calls formatting functions which
create queue entries which are interpreted by the output routine in order to determine what to print. it is the
output 1outine which actually docs the printing.

“s

If; :

How The Queue Entrics Specify Formatting Options
Inorder w fully understand how formats are specified, it is important to understand the entries which are
pusticd onte the feiue, These entrics are designed to be a concise language for specifying formatting options.
The entries ¢ ode two picces of information: what should be printed if an object can e printed on a single
ne. ami w' o ne breaks and indentation should be used if the object will not fit on one line. The following
—ae Jose, . oes the basic queuc entries,

e et —

e T A ————— . i o

Walters -7- GPRINTY

*literal' - Print the literal text between the apostrophes in the output.

- (Underscore) Print a1 (default 1) spaces in the output. ‘The argument can be negative in which case
the printing point inoves Ieft but only if there is sufficient blank space to back up over.

{n }-These two cntrics mark-the beginning and end of a group of queuc entries which form a
substructure in the output. This substructure is treated as a single unit when decisions about where
to insert line breaks are made. ‘Fhe number following the open bracket specifies how much the
indentation should be increased while printing items inside the substructure when they will not fit
on asingle line. 1tcan be omitted in which case it defaults t the sum of the lengths of the first three
things printed in the substructure.

+1 - (Plus) 'This specifics a change in indentation. “The indentation level in the current substructure is
incremented by # (detault 1) which can be negative.

-1 - (minus) A conditional line break. Put a line break in the output if” the structure immediately
containing this entry cannot be printed on a single line. Otherwise, print # (defaull 1) spaces in the
output.

! - Always put a linc break here.

As an examiple of how formatting information is encoded in queue entrics consider the NAMED~FORM
cexample used above. When TPRINT is used to print the list (NAMED-FORM (+ A B) ARG 1 ...) the
formatting routine calls the specially defined formatting function (reproduced below).

(defun (named-form :Gformat) (x)
(GF "{2 » & ':* - «}" (root x) (suffix x) (form x)))

Based on the template. the call on 6F creates the following queue entries (assuming for simplicity in this
example that (+ A B) is formatted as a single atom).

{2 'ARG' "1 it - (+AB))}

‘The output routine processes these queue entrics as they are created. It lets the entries corresponding to a
structure collect in the queuc until it can determine whether or not there is enough room o print the structure
on a single linc. If the available space is long enough then the entive structure will be printed on a single line
as follows:

ARG1: (+ A B)

If there is not cnough room then the structure will be broken up. The - queuc entry indicates that in this
casc a line break should be inserted beiore (+ A 8). The indentation increment specifics that the indentation
should be increased by two after the line break,

ARG1:
(+ A B)

If there is not enough roum to print the two line form, then there is no way to print out the structure which
is consistent with the queue entrics. This is an example of the finite line length problem. Pretty printers in
general suffer from this problem and there is no simple solution to it. However, the problem is usually not
severe as long as the line fenath available for printing is several times larger than the largest indivisible item
which must be printed on a single line. GPRINT has a number of built-in features (discussed below) which try
o amcliorate this problem by keeping the indentation siall in order to maximize the line length available.

e ks S i Ao

GPRINT -8- Waters

Formatting Templates

Quecue entries arc created exclusively through the use of the function (GF template argl arg? ...). GF
matches its template against zero or more arguments and produces a scries of queuc entrics. Fach template is
a string built up out of formatting codes. There are twa sets of codes. ‘The first set corresponds exactly to the
queue cnrics described in the last section (i.c. *literal*, _n. {n '}, +n, ~n, and 1). The second sct of codes
specifics how the template is to be matched against the arguments to be printed. ‘These are described in the
table below:

» - Call GDISPATCH to determine how to format this object, 1fit is an aton then this creates a literal
queuce entry forit. For example, (GF "e" *ARG) is the samc as (GF " *ARG'"),

I - Ignore the corresponding object.

[subtemplate] - The part of the abject being formatted which corresponds to this part of the template
must be a list. ftis decomposed into its clements. ‘The template between the square brackets
specifies how these are o be formatted. For example, (GF “[¢_[e_#]]" '(1 (2 3))) is the
sune as (GF "e_s_#" 1 2 3). Processing of a subtemplute between [[] terminates iminediately as
soon as the corresponding list is exhausted. YFor example, (6F “[+':*s]" *{1)) is the same as
(GF "+ 1) and not (GF "#':'" 1). The [] codes bave meaning only to 6F and do not by
themselves create any queuc entrics.

. - (Perind) Valid only inside [7. Tt specifies that the nextitem is the whole sublist left to process by (]
rather than its CAR. IFor example, (GF "[s_.+]" (1 2))isthcsameas (GF "=_s" 1 '(2)).

< > - This is used inside of [to specify a emplate for a list of unkpown length, The part of the
template between the angle brackets is taken as repeating indefinitely, creating a subpattern of
infinite Iength. FFor example, "[<s_>]" is the same as "[s_e_»_%_#_»u_s I

(n subtemplate) - 'This is an abbreviation for {n ' (' {subtemplate]’)' 3. This combines together
three ideas. First, it specifies that the list should be treated as a single structure in the output.
Sceond. it specifies that parentheses should be printed as delimiters around the list. Third, it
specilies that the list should be decomposed using the subtemplate to specify how its components
should be formatted. "this format code is a usclul abbreviation because pumy list formats share
these ideas.

‘The number after the open parenthesis specifies the indentation increment to use in the
substructure. It can be omitted in which case it defaults to the sum of the lengths of the first three
cntties in the substructurce. In this case the first entry is always an open parenthesis. I'ypically the
sceond entry will be the first item in the list and the third one will be svine amount of blank space
after the first item,

- This can be used in place of an argument to any formatting code (e.g. _. {3, (). +. or -). ltspecifics
that the vatue is to he taken from the next input 1o GF. FFor example, (GF "*A'_#'B*" 6) spccifics
that 6 spaces should be printed out between the A and the 8.

Plunk - White space can be inscrted into a template to give it added readability. 1t has no meaning in
the template.

Consider again the simple emiplate ("{2 » ¢ *:* ~ #}") vsed in the examples above. ‘The three es
tatch apainst the three arpuments to 6F causing GDLSPATCH to be called on cach one in . The rest of the
format codes directly specify queue entries,

Waters -9- GPRINT

Simple Formatting Functions

"This scction continues the presentation of formatting templates by discussing several standard Lisp
program formats. In GPRINT the uscr format control mechanisms are used to specify all of the standard
program formats. This adds greatly to the clarity of the pretty printing algorithm by scparating the format
specification from the rest of the algorithm. 1t also makes it possible for the user to modify the way programs
are printed by changing the standard formats. It should be noted that in Lisp, programs arc represented as
lists and are treated just like any other data object. All the mechanising which allow the user to control the
format of program lists can be uscd to control the format of data striztures implemented as lists.

Lisp function applications are traditionally formatted so that they are printed on a single line or, if there is
not cnough room, so that the arguments are lined up vertically one to aline. ‘The following function is used as
the default value of the variable GFN-FORMAT which controls how function applic:tions arc formatted. The
cxample printout shows how a function application looks when it has to be printed on more than onc line.,

(defun :Gfn-format (x) (GF “(*.. <*->)" x))

(LIST Y
)

The template matches against the list as a whole, printing parentheses around it in the output. ‘The
indentation incremcnt is et unspecificd so that it will default 1o the length of the function name plus two
{onc for the open parenthesis and onc for the space printed aller the function namne). ‘This causes the
arguments to line up one under the other. After the function name is printed out followed by a space, the
repetitive portion of the template specifics a conditional line break after cach argument in the function
application. Note that 6DISPATCH is called (via the o foimat code) in order to detennine how to format cach
argument, .

Lisp assignments are typically formatted so that cach successive variable/value pair appe:rs on a scparate
line. ‘This can be specificd by using the | fonnat code in a template as showan. ‘The following DEFUN scts up a
formatting function which specifics that this format should be used for lists which begin with the atom SETQ.

(defun (setq :Gformat) (x) (GF "(*— <e_*1>)" x))

(SETQ Y 1
z2)

‘This template is very similar to the one for function applications. 'The only difference is that the repeating
portion of the template specifics that the arguments arc to be formatted in pairs with a mandatory line break
after-cach pair. ‘This forces each pair to appear on a separate line cven when the entire SETQ could fit on a
single line, Note that there is no line break before the close parenthesis afler the last pair because processing
in a subtemplate for a list stops immediately as soon as the elements of the list arc exhausted.

T e T r——

GPRINT -10- Waters

‘T'he LET construct is used to bind a group of variables to initial values and then execute a sequence of
statements in this environment. ‘Typically, the variable binding pairs arc printed one to a linc and the
statements are printed one to a line. A small indentation is used for the statements in order 10 visually
differentiate them from the bound variable pairs and in order to keep the total indentation small.

(defun (let :Gformat) (x) (GF "(2 e_ (1 Coi>) <-#>)" x))

(LET ((Y 1)
(Z 2))
(CONS ¥ 2))

"The template specifies an explicit indentation of 2 for the statements in the LET. After the atom LET itself
is printed out, a subtemplate specifics how the fist of bound variable pairs should be formatted. Here an
explicit indentation of 1 is used so that they wilt linc up one under the other, A 1 fornat code is used to force
cach onc to appear on a scparate linc. ‘The final repetitive portion of the template as a whole specifics a
conditional linc break before cach statement in the LET. Note that if there is only one bound variable pair
this allows the let as a whole to be printed on a single line if' it will fit.

Conditional cxpressions are formatted so that cach clause of the conditional appears on a separate line.
Fach clausce is comnposed of a predicate followed by a sequence of statements. If a clause will not fit on a
single line, the predicate and statements are printed out one under the other,

(defun (cond :Gformat) (x) (GF "(e_ < (1 <*->) | >)" x))
(COND ({MINUSP Y)
)

In this 1emplate the repetitive portion of the templatc as a whole consists of a subtemplate for the clauses
and a ! format code which forees cach clause onto « separate line. The subtemplate specifics an explicit
indentation of 1 and a conditional line hreak afier cach expression in the clause.

The following formatting fiumction for MULTIPLE ~VALUE -BIND illustrates the use of the + format code. 1n
order to highlight the difference between them, the firm which returns the multiple values is printed at an
indentation of 4 while the statements which use the bound values are printed at an indentation of 2. The
indentation is initially specified as 4. "The subtemplate then prints out the list of bound variables. After the
multiple value returning form is printed the indentation is decremented by 2. The repetitive portion of the
temnplate then prints out the remaining forms one to a line at an indentation of 2.

(defun (multiple-value-bind :Gformat) (x) (GF "(d4e_ (<e_>) ~& +-2 <~od>)" x))

(MULTIPLE-VALUE-BIND (SYMBOL ALREADY-~THERE-P)
(INTERN STRING)
(COND (ALREADY-THERE-P (ERROR "Symbol aiready there: " STRING)))
SYMBOL)

i e s i st i - e e 0

Waters -11- GPRINT

As a (inal example, consider the function QUOTE. A list which begins with the atom QUOTE is not printed
with parentheses around it. Rather, the argument to QUOTE is printed out following a "*". "The example
shows the way the list (QUOTE A) is formatted.

(defun (quote :Gformat) (x) (GF “{''''[I ¢]}" x))
'A

The template sets up a substructure and prints a ' (inside of a literal in a template, "' ** stands for “*").
1t then prints out the argument 1o QUOTE, Note how it uses the format codes [] and I in order to sclect out
this argument.

More Complex Formatting Functions

A wide varicty of formats can be specified using simple formatting functions like those above which
contain only a single call on the function GF. However, these formats are restricted in several ways. In
particular, with these simple formatting functions it is not possible to vary the fornat based on the actual data
values in a structure. More complex formats can be specified by taking advantage of the fact that a formatting
function can contain arbitrary computation.

For example. consider the following way in which the format for NAMED-FORMs could be extended.
Suppuse that the suftix field in a NAMED-FORM is optional and that a value of NIL indicates that there is no
suffix. In this case we do not want to print the suffix at all. ‘The cxample shows how the list
(NAMED-FORM (+ A B) ARG NIL ...)should be printed.

(defun (named-form :Gformat) (x)
(GF "{2 *" (root x))
{cond ((not {null (suffix x))) (GF "+" (suffix x))))
(GF "':'-e}" (form x)))

ARG: (+ A B)

In the above format definition the single template used in the format definition in the beginning of this
paper is broken into three picees. A conditional test is inserted so that printing of the suffix only occurs whea
it is non-null. The { and } indicating the beginning and cnd of the substructure of qucue cntrics being
created are specified in separate calls on 6F. ‘This is a common occurrcnce and is in contrast to []
{and therefore (1)) which must be properly nested in a single call on GF.

Of all of the formats in this paper, this is perhaps the best example of the way GPRINT is typically used.
Some simple templates arc combined with some simple computation in order to define a flexible and
aesthetic format for a data object,

e wrac

GPRINT -12- Waters

Block Form and Tabular Form

In order to save space, long lists of data arc often formatted in block forin where as many items as possible
arc put on cach line. The language which is uscd to create formutting templates has two format codes which
are usclul for specifying this kind of format.

, - (Comma) A line break is inscrted here if and only if the structure immediately following this code
will not fit on the end of the current line. Otherwise 1 (default 1) spaces are printed.

;1 - (Semicolon) This is the same as the comma format except that additional spacing is inscrted so that
the items printed out line up in a tabular fashion. ‘The argument a specilics what spacing (o use
between the columns in the table. 1f it is omitted a default value will be chosen by the output
routine based on the lengths of the items to be printed out.

The following formatting function can be used to print out a list in block form.

(defun :G1block (x) (GF "{1 <e,>)" x))

(ORANGE PEAR (RED APPLE) GRAPEFRUIT
(NWAWATIAN PINEAPPLE) BANANA
CANTALOUPE POMEGRANATE TANGERINE)

‘There is a problem with printing lists of data in block format. If the clements of a list arc themscelves lists
with a depth of greater than one, then the vutput is aot very acsthetic because it is not casy to identify the
clements of the top level list. For exaple, consider the following list:

((ORANGE (SELL 3)) (PEAR (BUY 10)) ((RLD APPLE) (BUY 5))
(GRAPEFRUIT (BUY 10)) ((HAWATIAN PINEAPPLE) (SELL 8))
(BANANA (SELL 5)) (CANTALOUPE (BUY 4)))

The following formatting function uses the scinicolon format code in order to print out lists in a tabular
format. Itis used as the default value of the special variables 6SYMBOL-CAR-FORMAT and GNON-SYMBOL -~
CAR-FORMAT which control how lists of data are printed. This makes the output much easicr to read without
taking up very much more space.

(dafun :G1Tblock (x) (GF "(1 <;>)" x))

((ORANGE (SELL 3)) (PEAR (BUY 10))

((RED APPLE) (BUY 5)) (GRAPEFRUIT (BUY 10))
((MAWATTAN PINEAPPLE) (SELL 8))

(BANANA (SELL §)) (CANTALOUPE (BUY 4)))

Duc to the fact that the output routing uses only limited look ahead, the tab size must usually be chosen
hefore all of the elements in the list have been entered in the queue. As a result, it is not guaranteed to be
large enough. In this example, the fourth element in the list was not completely entered in the gucuc at the
time when it was determined that the list had to be put on more than one line. As a result, only the first three
clements were used to determine the tab size which turmed out to be too small to accommodate the fifth
clement,

e | e—

Waters -13- GPRINT

Functional Subtemplates

The following format codes increase the fiexibility of the templates by making it possible o call lunctions
at different points in a template, '

%f - This specifies that the function f should be called in order to format the corresponding item. ‘The
end of the function name is delimited by a space.

$7 - (Dollar sign) 'This command specifics that GDISPATCH should be called in order to format the
corresponding item, but that the function £ should be passed to GDISPATCH as a suggestion of how
to format the item. As above, the end of the function name is delimited by a space. The difference
between $/ and %/ is that with $f GDISPATCH gets control. As a result, if the item is not a list, then
the function / will not get used.

The use of the $ codc is illustrated in the following format which block formats a trec at all levels, 1t is
capable of formatting trees of arbitrary depth because it explicitly calls itsclf recursively. GDISPATCH is called

at cach level of the recursion. As a result, as soon as an atoin is encountered, the recursion is terminated and
the atom is printed normally,

(defun :Gblock (tree) (GF "(1<$:Gblock ,>)" tree))

-(ONE (TWO THREE)
((FOUR FIVE) SIX
SEVEN)
EIGHT NINE)

The fullowing formatting function for PROG uscs % so that it can call a subformat (GPROG-FORMAT2)
without GDISPATCH being called. This is necessary so that the labels (which are atoms) in the PROG will be
processed by GPROG-FORMAT2. Labels are printed left shificd by computing negative arguments for _

(declare (special Gwas-label))

(defun (prog :Gformat) (1ist)
(1et (Gwas~label) -
(GF "(+_$:Gblock <%Gprog-format2 >)" list)))

(defun Gprog-format2 (item)
(cond ((not Gwas-label) (GF "1"))})
(cond ((atom item) (setq Gwas-label T)
(GF "_#+_" (- (1+ (flatsize item))) item))
(¥ (GF "«" item) (setq Gwas-label nil))))

(PROG (RESULT)
L (COND ((NULL LIST) (GO THE-END)))
(SETQ RESULT (CONS (CAR LIST) RESULT))
(SETQ LIST (CDR LIST))
(60 L)
THE-END (SETQ RESULT (NREVERSE RESULT))
(RETURN RESULT))

An important aspect of the last example is the way it interacts with length abbreviation (described helow)
and other standard facilities provided by GPRINT. Since length abbreviation is implemented by []. in order
to get Iength abbreviation to apply to the formats you write, you have to use [J. ‘This is an important reason
for writing it in the forn given above rather than as a single routine containing a loop which decompases the
list itself and creies the correct format codes.

GPRINT -14- Waters

Miscr Mode
GPRINT provides several facilities which help deal with the finite line length problem. ‘Ihe most
comprchensive of these is a inodificd form of the miser mode supported by Goldstein's pretty printer [3]. “The
point at which miscr mode is triggered is controlled by the variable MISER-WIDTH (which defaults t 40). if
the linc width availablc for printing is less than MISER-WIDTH, then miser muode is triggered, and fonmatting is
modified in two ways. First, all indentations inside (3 formats arc forced to be I no matter what is specified.
Sccond, all + formats are ignored so that the indentation remains 1 in cach substructure. In addition to this, a
formatting command (M) is provided so that the user can specify line breaks which should only happen when
miscr mode is triggered.
M- A line break is inserted here if and only if the containing structure cannot be printed on one line,
and the width available for printing is less than MISER-WIDTH.
~n- (Tildc) Print n (default 1) spaces in the output. The argument can be negative in which case the
printing point moves left if there is sufficient blank space to back up over.

1 - (Underscore) ‘This is actually an abbreviation for ~aM. It therefore specifies a miscr mode linc
break.

In order to sec how miser mode works, consider the format for MULTIPLE-VALUE-BIND reproduced
below. The cxample shows the format which this specifies in miser mode. The indentation increment is
reduced to a constant 1, and the occurrences of _ Iead (o line breaks when misering. 1he same effects can be
scen in the COND.

(defun (multiple-value-bind :Gformat) (x) (GF "(4e_ (<o >) -» +-2 <-#d)" X))

(MULTIPLE-VALUE-BIND
(SYMBOL ALREADY- FHERE-P)
(INTERN STRING)

(COND

(ALLREADY-THERE-P
(ERROR
"Symbol already there: "
SIRING)))

S'YMBOL)

In order to maintain some of the indentation pattern of MULTIPLE-VALUE-BIND in miscr mode, the ~
format code could be used in place of _ and + as shown below.

(defun (multiple-value-bind :Gformat) (x) (GF "(2e~ (<s.>) - ~2¢ <~#>)" x})

(MULTIPLE-VALUE-BIND (SYMBOL
ALREADY-THERE-P)
(INTERN STRING)

(COND
{ALREADY-THERE-P
(ERROR
"Symbol already there: "
STRING)))
SYMBOL)

Through udicious choice of when to use ~ instead of _ or +, the user can gain considerable control over
how a format will look in miser inode. However, as can be seen above, miser mode is not particularly
aesthete no matter what you do. It exists solely as an emergency measure to prevent printout from
overrunning the right margin.

Shbe M-t s oA

Watcrs -15- GPRINT

Left Shifting of Major Units

Anather way in which GPRINT deals with the finite line length problem is to take logical units of program
lext (such as LETs, PROGs, and DOs) and shift them Iefl in order to increase the amount of line width available,
‘Vhis process is triggered when the tine width available for printing is less than MAJOR-WIDTH (which defaults
10 40). [cft shifting is illustrated in the example below. The radical reduction in indentation is very effective
atincreasing the width avaitable. Unfortunately, the nonstandard format reduces readability. ‘This problem is
amcliorated by the fict that an entire logical unit is being left shifted, not some arbitrary part of the program,

(defun (let :Gformat) (1ist)

(Gcheck-indentation 1ist
#'(lambda (x) (GF "(2 e_(1 <¢1>)<-#>)" x))))

(defun Geheck-indentation (1ist format-fn)
(tet ((ind (Gestimate-indent)))
{cond ((> (- Glinelen ind) major-width) (GF “%#" 1ist format-fn))

(T (GF "lw#';-mmmmmmmes A1t (- dnd) (- ind 11.))
(GF "~#Z#" (- & ind) l1ist format-fn)
(GF P A R '~#'|'l" (' ’ind) (' ind 11'))))))

(DEFUN ROOTS-OF-QUADRATIC (A B C)
(COND ((NOT (ZEROP A))
(LET ((DISCRIMINANT (- (+ B B) (* 4 A C))))
(COND ((PLUSP DISCRIMINANT)

--------- |

(LET ((TERM1 (- B))
(TERM2 (SQRT DISCRIMINANT))
(TERM3 (s 2 A)))

(LIST (// (+ TERM1 TERM2) TERM3)
(/7 (- TERM1 TERM2) TERM3)))

|
)

I eft shifting is implemented by the formatting function GCHECK-INDENTATION. ‘The use of this function
is illustrated by the formatting function for LET shown above, It calls GCHECK-~INDENTATION passing it the
simple formatting function for LET which was described in the beginning of this paper.
GCHECK-INDENTATION calls the function GESTIMATE - INDENTATION which looks at the queue of formatting
commands and determines what indentation will he used when printing out the LET. Note that this must be
computed from the queue because there may be many entries in the queuc which have not yet been printed.

If the width available for printing is greater than MAJOR-WIDTH then GCHECK-INDENTATION just calls the
formatting function passed to it. (Note that if the & format code was used instead of %, GDISPATCH would
think that it was encountering a second (circular) reference to the list being printed and abbreviate it as
described in the next section). 1f the width available is less than MAJOR-WIDTH then GCHECK- INDENTATION
spaces back 1o column z¢ro and prints a comment line which indicates that left shilting is occurring using a
1 to show the indentation which otherwise would have been used. On the next line, the format spaces back
to column § and calls the formatting function passed to it in order to format the list being printed. Finally, it
prints another comment line. Note that the templates make heavy use of the # format code so that the
function can compute the appropriate negiative spacing.

B

GPRINT -16- Watcrs

Abbreviation

GPRINT provides scveral different abbreviation mechanisms, First, there is abbreviation based on
PRINLEVEL and PRINLENGTH as in the standard printer. A "se" is printed for structures which are too deep,
and .. ." is printed in place of the ends of lists which arc too long. ‘The following cxample shows how the
list (1 (2 (3 (4))) A 8 C) would appcar with PRINLEVEL and PRINLENGTH both sct to 3.

(1(2 (3 so)) A ...)

‘There is a scparate abbreviation facility based on the variables PRINSTARTLINE and PRINENDLINE. As
GPRINT prints, it counts the lines starting with zero for the line the printer is called on, While the line number
is less than PRINSTARTLINE no actual printing is donc. If the line number cver becomes greater than
PRINENDLINE, then the printer prints "---" to indicate that truncation has occurred and immediately stops
printing and returns normally. Experimentation has shown that sctting PRINENDLINE to a relatively small
number like 4 (while setting PRINLEVEL and PRINLENGTH to NIL) is very uscful particularly duc to the
availability of the continuation Jacilitics described below. ‘The example below shows how an examiple of
output using these scttings.

(DEFUN ROOTS-OF-QUADRATIC (A B C)
(COND ((NOT (ZEROP A))
(LET ((DISCRIMINANT (- (+ 8 B) (* 4 A C))))
(COND ((PLUSP DISCRIMINANT) ---

Truncation of the output can also be triggered by typing TERMINAL STOP-QUTPUT. ‘T'his intcrrupts the
prinier imediately, causing it to terminate seturning normally,

Whenever output is abbreviated duc to any of the methods described above, GPRINT remembers the state
of the printing so that it can be resumed. Only a single variable is maintained so that only the most recently
abbreviated thing is remembered. I printing was truncated by PRINENDLINE or user intenvention, then it can
be continued from the point ol truncation by typing 'ERMINAL RESUME.

As an additional feature, you can reprint the last abbreviated thing in full with PRINLEVEL, PRINLENGTH,
PRINSTARTL INE. and PRINENDLINE abbreviation disabled by typing TERMINAL 1 RESUME.

As a third kind of abbreviation, if the variable GCHECKRECURSION is T then GPRINT checks for circularity
in the objects it is printing. When a circular reference to an object is encountered, it is replaced in the output
by Anor %n. %n is only used in alist. It is used when the COR of a list is £Q to an carlicr COR in the same list.
In this case 2 is the number of CDRs scparating the two positions. An is used in other situations. Here,
indicates that n sclector operations (CAR, CXR, AREF; but not COR) were performed between the first
accurrence of the object and this one, "This kind of abbreviation is iflustrated below,

the result of (LET ((X ‘(Y (Z 1 2 3) 4)))
(RPLACD (CDR X) (CDR X))
(RPLACA (CDADR X) X)
(RPLACA (CDDADR X) (CADR X))

(RPLACD (CDDADR X) (CDADR X))
X)

prints as (Y (2 ~2 M . %2) . %1)

1t is possible (bt not casy) 1o reconstruct the exact shape of the object from what was printed. However.
the main purpose is just to print something more readable than what you would otherwise see. An important
feature of the way this abbreviation is done is that it is completely orthogonal to the rest of the formatting
process so that it works no matter what kinds of user formatting functions are written, and no matter what
kind of data objects are being printed.

Waters -17- GPRINT

Data Types Other than Lists

In addition to lists, GPRINT has built in formatters for all of the standard Lisp data types. Symnbols,
numbers, strings, and things of random types not specifically discussed below are treated as indivisible atoms
and printed in the standard ways.

Named structures, entitics, and instances arc printed in onc of two ways depending on whether or not they
know how to format themsclves. 1f the object accepts the message :GFORMAT-SELF then GPRINT sends a
:GFORMAT-SELF message with the object as argument to the object so that it can format itsclf,

If the named structure, entity, or instance does not take a :GFORMAT -SELF mcssage, then GPRINT treats it
as an atomic object and lets the standard printer print it. "This makes it possible to use GPRINT on these
objccts without having to write formatters for them. However it should be noted that since they are treated as
atomic objects, no formatting occurs inside them no matter how large their print form may be. For example,
alinc break will never be inserted inside one. :

If an object is an array (and not a named-structure) it is formatted as follows. GPRINT first checks to see if
there is a formatting function for the array. The association between formatting functions and arrays is
maintained through a list of functions stored in the variablc GARRAY-FORMATTERS. ‘These functions arc just
like the formatting functions described above except that in addition to creating queuc entries in order to
format an object, they must also test o sce whether they are applicable to the object. This makes it possible
for the user to use any kind of applicability test he desires. If the format function is applicable it should
format the object and retuen T. Otherwise it should take no action and return NIL. A function is set up as an
array formatter by adding it to the list GARRAY-FORMATTERS. GPRINT calls cach of these functions in turn
passing it the object. As soon as onc of them returas T it stops. 1 they all return NIL then a default formatter
is used,

The default array formatter first prints out the array object in the standard way (c.g. as an atom containing
the type and the address). Next, it the variablc GPRINT-ARRAY-CONTENTS is T and the array has only onc or
two dimensions it prints out the contents of the array. The contents are printed as a list (for once dimensional
arrays) or a list of lists (Jor two dimensional oncs). Tabular blocking is used to format these lists.

‘Ihe kind of arbitrary user specified dispatching supported for arrays is also supported for lists. Functions
put on the list GLIST-FORMATTERS can be used to associate formats with lists when the association is based on
some feature other than the CAR of the list. Similarly, functions put on the list GSPECIAL-FORMATTERS can be
used o override all standard dispatching including the initial split based on data type.

Applicability to Languages Other Than Lisp

It is important to note that. though the discussion above was cast in the domain of the Lisp language, the
ideas arc substantially programming language independent. it should be possible 1o usc these ideas to
construct a Aexible pretty printer allowing significant user control of format in any programming language
environment,

GPRINT makes it possible for the user to control the format of both programs and data. Of these two
capabilitics, the control over program format is the casiest to export to other Janguage environments. I'wo
basic things are requircd: a representation for program parse trees, and a method whereby the user can
specify formats for non-tenninal nodes in these trees. In Janguages like Lisp where a data representation for
parse trees is part of the definition of the language. this is the logical choice for the representation. In other
Languages some such representation has to be developed. [T the pretty printer is intended to aceept program
text fikes sis input, a parser for the Linguage has to be implemented if one is not already availrahlc.

There are two hasic ways in which user formiat control can be supplied. One way is to use the same

ke e e

GPRINT -18- Waters

mechanisms which are supplicd for specifying data formats by simply applying them to the data
representations for parse trees. ‘This is the approach taken by GPRINT. Another approach is to follow the
suggestion of Oppen[7] and allow the user to specify formals as annotations to the gramunar for the
programining language. From the point of view of implementation, this approach is esseatially identical.
However, for a language which (unlike Lisp) has cxtensive syntax this approach would undoubtediy be
acsthetically superior since it uses standard grammatical notation in order to communicate with the user
instead of some ad hoc internal representation.

Using GPRINT's approach to the printing of data in other programming environments is more difticult.
‘The key issue is being able to obtain data type information at print time. However, before looking at this
problem in detail consider some other issues.

The formatting templates described above could be used with any kind of data. 'The only thing which has
to be changed is that [] has to be extended so that it can decompose other compuosite data structures besides
lists. Logically there is no problem since, in general, any data structure has a default lincar ordering for its
components. FFrom an implementation standpoint, there is no problem with selecting out components onc at
a time as long as you can determine the data type of a given structure.

‘The basic dispatching scheme presented above can be straightforwardly cxtended as long as type
information can be obtained. 1t is casy to implement an association between types and lormatting routines so
that cach type could have its own format. Further dispatching on subfeaturcs of individual types could be
implemented if desired.

In a language environment such as |.isp where. in general, complete run time type information is available,
it is wivial to detennine the type of somcething when it nceds to be printed. Unfortunately, in most limguages,
much of the data type information is used only by the compiler and is not available at ron timae. I a kinguage
with pure strong typing that makes it possible for the compiler to determine the exact data type of cvery
variable, the compiler could be straightforwardly modificd in order supply the type information needed by
the dispatcher. One way to do this would be to have the compiler create a table of type information which
could be referred to by the dispatcher at run time. Altcrnately, the dispatching nceded for individual calls on
the printer could be performed at compile time using the compile tinte type information. In order to make it
possible for the user (o interactively request the printout of various dota items at run time, the tabular
approach would be required. just as a dynamic debugger has 1o have access o the compiler’s symbol table in
order to use the programmer’s variable names,

Untornately, few Linguages have pure strong typing. Most languages suppaort data types such as union
types and variant records. Most of the time, this need not be a severe problem because such types are not
usclul unless there is some way for programs to determine what the actual type of a data item is. For
example. the compiler could specify to the dispatcher that a given data item was of a particular union type.
‘The programmer would have to supply a decision procedure which could be used by the dispatcher to
deterinine the exact type of the data item at run time. This would not be a difficult sk as long as the union
type was straightforward and a single decision procedure for the union type could be implemented which
would work in all situations,

‘There are language environments (for example assembler language) which have little run time type
information, litde compile time type constraints, and where the user defined data structures arc ofien of such
a chaotic nature that it would be virtually impossible to write the kind of Jdata type decision procedures
needed by the dispatcher. In such a situation, the kind of pretty printer presented in this paper would not be
nracticol. It should be noted that such an uncontrolled cnvitonment presents a number of problems much
more scrious thun the inapplicability of this kind of pretty printing. Current trends have been toward more
regularized environments which should be able to support a pretty printer like GPRINT,

e e o i ot Sk

Waters -19- GPRINT

Conclusion

GPRINT includes a large number of standard formats and featurcs (such as the oncs used as cxamples
above). As a result, a user docs not have to write any of his own formats in order to get reasonable output in
ordinary situations. However, no amount of anticipation can satisfy every user. This is particularly truc when
a pretty printer is being used in an interactive programming cnvironment to print data as well as programs,
and when it is called by user programs as well as by the system itsclf.

‘The principal goal of the design of GPRINT has been to produce a system with good human cngineering
which gives the user powerfut facilitics for controlling the format o " output and which at the same time makes
the specification of simple formats simple. T'wo key idcas comprise GPRINT's approach to this problem: the
basic algorithm chosen, and the cxistence of multiple levels at which a user can specify formatting
information,

‘The key features of the algorithm underlic the basic simplicity of GPRINT's approach and, at the sanic
time, fundamentally limit its scope. ‘The division of the algorithm into two picces communicating through a
queuc makes it possible to separate the simple parts of the algorithm from the complex ones. The decision to
usc a lincar time algorithm in the output routine makes it possible for GPRINT to run with acceptable speed.
However, it fundamentally limits the kind of formatting decisions which can be made by the output routine.
In particular, when making its decisions, it can only look ahead a very limited distance. An example of this
wits discussed in the section on tabular form output.

In line with the limited abilitics of the output routine the gueue entrics are designed so that they cacode
essentiatly only two formatting options for a given structure: how to print it on one line, and how to print it on
multiple lincs. (A third miscr format is also specificd for cach structure, however, this format is largely
implicit and the user docs not have very much control over it.) This design is an important basis for the
understandability of the printer becausc it presents the user with a simple model of how formatting decisions
are made. However, onc could casily imagine wanting to specify more complex formatting information. lFor
cxample, one might want to specitv two completety different niulti-line formats: onc to use when there is a lot
of romn available and the other to use when there is only a little space.

‘The printer provides three basic levels at which a user can specify formatting information. Iirst, he can
simply use the default formats supplicd with the printer and docs not have to do anything himsclf. Second,
be can use simple templates. These make it very casy for him to describe certain aspects of how a structure is
to be formatted. ‘Third, he can writc more complex formatting functions. ‘This allows him to exercise much
more control over the format to be used, at the cost of greater complexity.

The use of multiple levels of interaction is a gencrally uscful twehnigue for increasing the
understandability and availability of a system to a wide range of users, 1t makes it possible for uscrs who have
simple needs to satisfy them without having to learn very much about the system. Users who ke the time to
learn more can then do more.

GPRINT -20- Waters

References

[1] Conrow, K., and Smith, R.G., "NEATER2: A P1./1 Source Program Reformatter”, CACM V13 #11,
November 1970, 669-675.

[2] Donzeau-Gouge. V. et al, "A Structure-Oriented Program Editor; A First Step ‘Towards Computer
Assisted Programming”, Proc. Inter. Computing Symp., Antibes, 1975,

[3] Goldstein, L., "Pretty Printing, Converting List to Lincar Structure”, MF1/A1/MEMO-279, ['cbruary 1973,

[4] Hearn, A.C. and Norman, A.C., "A Onc-Pass Pretty Printer”, Report UUCS-79-112, Univ. of Utah, Salt
Lake City, Utah, 1979,

[5] Heuras, J., and Ledgard, H.. "An Automatic Formatting Program for Pascal”, SIGPI.AN Notices V12 #7,
July 1977, 82-84.

[6] McKeeman, W. "Algorithm 268, Algol-60 Reference Language Editor [R2])”, CACM V8 #11, November
1965, 667-669.

{71 Oppen, D, "Prettyprinting”, ACM Transuctions on Programming Languages and Systems, V2 #4,
October 1980, 465-483.

[8] Scowen, R. et al, “"SOAP - A Program Which Documents and Edits Algol60 Programs”, Comput. J, V14
#2,1971, 133-135.

[9] Teitlebaum, T, *“The Cornell Program Synthesizer™, ‘I'ech. Rep. 79-370, Dept. of Computer Scicnce,
Cornelt Univ.,, 1979.

[10] Weinreb, ., and Moon, 1., “Lisp Machine Manuat”, MIT Al Lab., March 1981,

E g

Waters -21- 4 GPRINT

Maclisp Compatibility

The discussion in the main body of this paper is couched in terms of 1Lisp Machine Lisp, however, GPRINT
is substantially Maclisp compatible. Almost everything above applics equally to both versions. ‘This scction
discusses the fow differences between the two versions.

‘The 170 in Maclisp is quite different than on the Lisp Machine. The Maclisp version follows all of the
Maclisp conventions. In particular, you can call GPRINT with a list of files and default output is controlled by
the variables TYO, AR, AW, QUTFILES, ctc.

I'he compilation cnvironment is somewhat diffcrent in Maclisp. GPRINT must be loaded in in order for
formatting functions to compile correctly because GF is amacro. On the Lisp Machine you don’t have to take
any special action in order for this to be the case when you arc using GPRINT, In Maclisp you have to make
sure that it is loaded into the compiler by a-DECLARE in any file which defines formats. Also note that in
Maclisp the functions which take optional control paramcters (cg GPRINT, GPRINT1, GPRINC, GEXPLODE, and
GEXPLODEC) arc Jexprs and nced «LEXPR declarations.

In Maclisp, the functions triggered by TERMINAL STOP-OUTPUT and TERMINAL RESUME arc triggered by
typing control characters. ‘The printer can be stopped by typing AS. Printing can be resumed by typing AC
{*R in TOPS20 vessions). Reprinting in full is triggered by AP, In Maclisp these control characters are not set
up by default. You have to call the function GSET-UP-PRINTER in order to get them defined. Note also that
in Maclisp, the default symbo! for depth abbreviation is "#” instead of "se".

The Maclisp version of GPRINT supports the formatting of hunks. ‘T'wo basic mechanisms are supplied
analogous to the ones described for arrays in the main body of the paper. If a hunk is a USRHUNK which takes
messages (note that EXTENDs and the like are all USRHUNKs) then GPRINT checks the messages it aceepts, [f it
takes the message :GFORMAT-SELF then GPRINT sends a :GFORMAT-SELF message with the object as
argumient to the object so that it can format itself, 1f a USRHUNK does not take a - GFORMAT ~SELF message, but
it does take a : PRINT-SELF or PRINT mcessage then GPRINT treats the hunk as an atomic object and lets the
standard printer print it. 1f'a USRHUNK does not accept any of these messages, then it is treated as an ordinary
hunk, '

In order to format an ordinary hunk GPRINT first cheeks to see if there is a formatting function for the
mmk. The user scts up a hunk formatter by adding a function to the list in the variablc GHUNK - FORMATTERS.
‘The purpose of this function is two fold: to test whether it is applicable to a hunk (in which casc it returns ‘1)
and in s case to actually format the hunk. GPRINT calls cach of these functions in turn passing it the hunk.
As soon as one of them returns T it stops. If they all return NIL then the hunk is printed by default in the
normal way (c.g. in parentheses with the CXRs séparated by periods) in block format.

GPRINT -22- Waters

Functional Summary
‘I'his appendix describes all of the user functions supported by GPRINT.

GPRINT objeci &op tional stream format level length endline startline
‘This is exactly analogous to PRINT except that it docs pretty printing. ‘The first argument is the object
to be printed. The second argument specifies the stream to usc for output. 1f it is missing then the
standard system default is used (c.g. STANDARD -QUTPUT).

The third argument is a formatting function which defaults to NIL. If non-NIL it will be used by
GDISPATCH to format the object. For example, (GPRINT FOO STANDARD-OUTPUT ' :GFN-FORMAT)
will use functional format for the top level of FOO no matter what the CAR of foo is. The last four
arguments can he used to control abbreviation. They are used to sct the valucs of PRINLEVEL,
PRINLENGTH, PRINENDLINE, and PRINSTARTLINE respectively. If they are omitted, then the current
bindings of these variables arc used to control abbreviation.

GPRINT1 ubjcct &optional stream format level length endline startline
This is cxactly like GPRINT except that it corresponds to PRIN1 instcad of PRINT. (Unfortunately, the
standard Maclisp grind package has already uscd up the name GPRIN1.)

GPRINC object &optional strcam format level length endline startline
‘This is cxactly like GPRINT except that it corresponds to PRINC instcad of PRINT.

PL object &optional stream format
This is an abbreviation for (GPRINT object file formar NIL NIL NIL NIL). It specifies that the object
should he printed without abbreviation. 1tis quite handy at top level, '

GFORMAT sircani template &rest args
This is just like FORMAT except that GPRINT is called to do the printing :and the template has the same
formy us a template for GF. For example, (GFORMAT NIL "(e_<e=>)" X) creates a string containing X
printed in functional format at the top level.

GEXPLODE ohject &optional fornat level length
‘This is analogous to the function EXPLODE except that it docs pretty printing.

GEXPLODEC cbject &optional format level length
‘This is analogous to the function EXPLODEC cxcept that it docs pretty printing.

PLP "e &rest args
Phis iy very similar to GRINDEF but calls GPRINT. Each arg is cither a symbol or a CONS of a symbol
and a list of specific properties to print. 1fit is a symbol then any propertics it has which are in the list
PLP-PROPERTIES arc printed. Otherwise, the specified propertics are printed. 1f no args are supplicd
then PLP is recxecuted on the last set of args it was called on.

GSET-UP-PRINTER

Callina this sets up GPRINT as the top level printer. This consists basically of just setting the variable
PRINT to GPRINTS.

Waters -23- GPRINT

GF femplate &reost args
This is used to define formatting functions, ‘The structure of the remplare is summarized in a separate
appendix. Note that unlike 6FORMAT this docs not actually print anything. Rather, it just makes queue
entrics when the formatting function it is in is called by GDISPATCH. The fact that 6F is a macro saves
time by parsing the template at compile time, and producing cfficient code to do the formatting. 'This
docs waste spacc however. Itis to your advantage to make cach template as short as possible.

GFUNCTION template
This is an abbreviation for #' (LAMBDA (X) (GF template X)).

FORMAT stream format-string &rest args
A new format keyword ~N is defined so that you can call GPRINT1 from FORMAT, ~:N invokes GPRINC.
Numeric pre-arguments arc taken to be PRINLEVEL, PRINLENGTH, ctc.

GPRINT -4- Waters

Variable Summary

"This appendix summarizes all of the control variables which can be sct by the user in order to control the
actions of GPRINT.

PRINLENGTH system defined default
“I'his specifics the maximum length list that will be printed without abbreviation. NIL means infinity.

PRINLEVEL sysiem defined default
“Ihis specifics the maximum depth at which any object will be printed. NIL means infinity.

PRINSTARTLINE default NIL
Output is inhibited until the PRINSTARTLINEth line is reached. NIL is the same as 0.

PRINENDLINE defaull 4
Output is aborted and the printer returns normally as soon as the PR INENDLINEth line is reached.

PRINMARGIN dcfuult NIL
"Fhis specifies the total line length available for printing. 1€ it is NIL, then the printer asks the output
strecam what the line length is.

MISER-WIDTH defaull 40
Miscr mode printout is triggered if there is less than this amount of width available for printing.

MAJOR-WIDTH defiull 40
| eftshifling of logical units will occur if there is Icss than this amount of width available for printing.

GCHECKRECURSION default 7
If this is T then GPRINT checks for circular pointers and abbreviates them appropriately.

GSHOW-ERRORS default NIL)
Nornally, GPRINT does an ERRSET so that no crror which occurs during formatting can causc an crror
in GPRINT. Ifthis is sct to T then you will enter the error handler if any crror occurs. ‘This is usctul for
debugging.

GFORCE-MORES defaull T
If this is 'I' then things arc sct up so that you get MORE processing all of the time. Otherwisc, MORE
processing is suppressed il printing is initiated within 7 lincs of the bottom of the screen.

GSPECIAL~FORMATTERS default NIL
‘This holds a list of formatting functions which are tested for applicability before any other dispatching
is done,

GOVERRIDING-LIST-FORMATTERS default NIL
This holds a list of formatting functions which are tested for applicability to any list which is being
printed before any other dispatching is done on it.

o e e

e e

Waters ~25- GPRINT

GLIST-FORMATTERS default NIL
‘This holds a list of formatting functions which are tested for applicability to any list which is being
printed before any other dispatching is done on it unless dispatch was called with a specific suggesting
of how to format the list. (The difference between this and GOVERRIDING-LIST-FORMATTERS is that
these are applied in fewer places. For example, they will not be tested against the list of bound
variables in a PROG because the format for PROG specifics exactly how this subpart of a PROG should be
formatted.) :

:GFORMAT property
If the CAR of a list has a value for this property. then the value is catled as a formatting function to
format the list. (If nonc of the above cases apply.)

GAPPLY-FORMAT default :GAPPLY - FORMAT
"This is uscd as the format for literal LAMBDA applications.

GFN-FORMAT defaull :GFN-FORMAT
This is uscd as the default format for function applications.

GSYMBOL-CAR-FORMAT defaulr : G1TBLOCK
"This is uscd as the default format for lists whose CARs are symbols.

GNON-SYMBOL -CAR-FORMAT dlcfaulr : G1TBLOCK
‘This is used as the default format for lists whose CARs are not symbols,

:GFORMAT-SELF mncssage
If an instance, entity, or niauned-structure is st up so that it will process this message type, then it is sent
amessage in order to format itsclf, It gets onc argument (the object itself) in addition to any arguments
which are supplicd by the message sending mechanism.

GARRAY-FORMATTERS default NIL
“This holds a list of formatting functions which will be tested for applicability to any array being printed
which doesn’t take a : GFORMAT ~SELF message.

GHUNK-FORMATTERS default NIL :
‘This holds a list of formatting functions which will be tested for applicability to any hunk being printed
which docsn’¢ take a : GFORMAT - SELF message.

GRINO-MACROEXPANODED definu/t NIV
If this is T thep MACROMEMOized miacros will printed out as they appear after expansion, Otherwisc they
will be printed out as they appear hefore expansion.

PLP-PROPERTIES default (: FUNCTION :VALUE)

"This holds.the list of values which the function PLP will print out by default. The default specifics that
only the function value and valuc should be printed.

et g et i —

GPRINT -26- Waters

Summary of Formatting Codes

‘This appendix summarizes the formatting codes which are available for use in the template supplied to the
f macro GF, The template is a string of single character commands, some of which can be followed by a
parameter. There are three kinds of parameters:

n - Some commands take a number as a paramcter. This number should be an integer optionatly
beginning with a "-" and/or ending with a ".". Alternatcly, it can be omitted in which case a
default value is used.

J - Some commands take a function name as a parameter. This name is an arbitrary symbol possibly
containing ":*. Casc docs not matter. The symbol tust be terminated by a blank. Function niame
parameters cannot be omitted. They have no default values.

- This can be used in place of any numcric parameter or any function name parameter. It indicatcs
that the next input to GF should be used as the parameter, instead of a literal value.

The commands which can be used in a template are divided into scveral categories. ‘The first sct is used to
parsc the structure of the arguments to GF so that their parts can be accessed.

[1-'Ihis is used to access the internal clements of an item which is a list. The template inside the
brackets refers to the clements of the list. If the item is not a list, then no formatting of it, or
anything inside it, is done. Processing begins by considering cach clement of this list in turn. As
soon as the list is exhausted, control skips out of the subtemplate and continues afier its end. This is
done cven if there is more stuff left in the subtemplate. Special code is included to deal with the
possibility of uncxpectedly encountering a non-NIL atomic COR. If this happens it is automatically
formatted to appear after a .". [] also produces special code 1o deal with length abbreviation.
‘They only way to get it automatically is to use [].

. - {Period) ‘This is valid only inside [J. It specifies that the next item is the whole sublist left to
process by [] rather than its CAR. For cxample, (GF "[e_.¢]" '{1 2})) is the samc as
(GF "s_s" 1 '(2)).

Note that when a ™. " is used, normal checking for the end of the list in the [] is suppressed. For
cxample, (GF "[s_.«_]" '(1)) iscquivalentto (GF "»_s_" 1 NIL). The NIL at the end of the
list is explicitly picked up by the ™.", and a blank will be printed at the end. ‘This happens cven
though the [] template would normally have terminated right after the first e,

< > - "This can only be uscd directly inside [] (or (). 1t specifies an indefinite repeat block. This is
used to specify a template for a list of unknown length,

Waters -27- GPRINT

‘The next sct of commands are used to specify how individual items are printed out.
I - lgnore the corresponding item.

*literal® - Print the indicated literal using PRINC and do not count it as one of the items printed from
the point of vicw of length abbreviation. Note that in the literal " * * " stands for "' ",

» - This specifics that GDISPATCH should be called in order to format the corresponding item,

%/ - This specifies that the function £ should be called in order to format the corresponding item.,
(Note if £ is # then the argument which is used as the function follows the argument which is
fonmatted.)

$/ - (Dollar sign) ‘This command specifies that GDISPATCH should be called in order to format the
corresponding item, but that the function £ should be passed to GDISPATCH as a suggestion of how
to format the item. (Notc if £ is # then the argument which is used as the function follows the
argument which is formatted.) The difference between $f7 and %/ is that with $ GDISPATCH gets
control. As a result, if the item is not a list, or if some function on GOVERRIDING-LIST-
FORMATTERS formats it, then the function f* will not get used,

87" subtemplates* - In addition to the name of a function, the paramecter to $ can be a literal template
which is converted into a function to use. (Note that the quotes have) be slashified in order to
read in inside a quoted string.) The formatting function produced is compiled out of line. As a
result, if there is a # tormat cade in it, the argument to GF that this refers to will be compiled out of
linc. In order for this to work any variables this refers to must be declared special.

1 "The next commands are used to specify the nested structure of the output (which need not be the same as that
i of the input).

| {n) - 'This indicates a substructural unit in the output. The parameter specifics what indentation to
use when printing out the items inside the substructure if the substructure cannot be printed on a
single linc. (If the indentation is specified to be zero then the substructure is not counted as
increasing the depth from the point of view of depth abbreviation.) ‘The default parameter value is
calculated as the sum of the lengths of the first thing printed in the substructure, and any literals
hefore it and any spaces after it.

+n - (Plus) This specifics a change in indentation. The indentation level in the current substructure is
incremented by # which can be negative. Note that this will not take effect uatil the next line. For
example, the template " (e-+-+24-9)" docs not increase the indentation unlil the fourth item is
printed while " (s-#+2-e-+)" prints the third item at an increased indentation.

(») - This is a uscful abbreviation in the situation where the nested structure of the output is the same
as the nested structure of the input, and when you want to print parentheses around the structure. 1t
is an abbreviation for {n* ([')). Additionally, it the (») is nested more directly inside []
than inside $ then it is treated as an abbreviation for $/°(n* ([J')'}7". In other words, if the
item whose format is being specified by the (#) was not passed through GDISPATCH for
dispatching then the $ format code is used to force the list to dispaich through GDISPATCH. This
prevents the format from blowing up when the item is not a list. (Note the comment about # inside
$/" /" sbove.)

T T T y

—_— T ==

e e g L e

GPRINT -28- Waters

The next sct of commands specifics spacing and where and when carriage returns should be printed. Note
that there is actuatly a complete scparation between these two concepts. The format codes used above which
combinc the two idcas are abbreviations combining the underlying codes.

~n - (Tildc) Print n (default 1) spaces. (Note that spaces arc clided if they are the first or last thing on a
linc).

Tn-Tab over. Moves to a place where the character position relative to the currest indentation is
congrucat to zero modulo a. (Docs not move at all if it does not have to.)) When necessary, a
default tab size is calculated based on the length of the other items in the substructure.

A - Do a line break here always.

! -Samc asA.

N-Do a line break here if required for normal mode printing. l.c. if and only if the structure
immediatcly containing this point cannot be printed ‘on a single line.

-n - {(Minus) Abbreviation for "~nN" which is what you usually want.

B - Do a linc break here if required for block moede printing. This is the same as N except that cven if
the immediately containing structure is being broken up a line break will not be put here as long as
the following structure can be printed on the end of the current line and the prior structure at this
level was printed on a single line.

. 1 - (Comma) Abbreviation for "~n8" which is what you usually want.
; 1 - (Semnicolon) Abbreviation for "~1TnB" which is what you often want.

M- Do a line break here if required for miiser mode printing. Put a line break here if the containing
structure will not fit on a single line, and the remaining line width available for printing is less than
MISER-WIDTH.

1 - (Underscore) Abbreviation for “~mM" which is what you usually want.

The next two formatting codes were not discussed above. They are provided as extra hooks into the
GPRINTing process. '

&f- Ihe function fis called with no arguments at this point. Note that function is called during the
formatting process.

E - When the output routine gets to this point in printing, the arg to GF corresponding to the E is
EVALed (out of line). This is uscful for getting information about the state of the printing process. 1t
should NO'I" be used 10 print anything out because the output routine will not realize that anything
was printcd and its character position calculations will be wrong. Note that the difference between
& and E is the time at which the function evaluation occurs.

The characters SPACE, TAB, CR, and LF arc all ignored. Any other character is an error.

